Unity — Getting Started

Welcome

Congratulations. You’re now the proud owner of your very own pile of bits! What are you going
to do with all these ones and zeros? This document should be able to help you decide just that.

Unity is a unit test framework. The goal has been to keep it small and functional. The
core Unity test framework is three files: a single C file and a couple header files. These
team up to provide functions and macros to make testing easier.

Unity was designed to be cross-platform. It works hard to stick with C standards while
still providing support for the many embedded C compilers that bend the rules. Unity
has been used with many compilers, including GCC, IAR, Clang, Green Hills, Microchip,
and MS Visual Studio. It's not much work to get it to work with a new target.

Overview of the Documents

Unity Assertions Reference

This document will guide you through all the assertion options provided by Unity. This is going
to be your unit testing bread and butter. You'll spend more time with assertions than any other
part of Unity.

Unity Assertions Cheat Sheet

This document contains an abridged summary of the assertions described in the previous
document. It's perfect for printing and referencing while you familiarize yourself with Unity’s
options.

Unity Configuration Guide

This document is the one to reference when you are going to use Unity with a new target or
compiler. It'll guide you through the configuration options and will help you customize your
testing experience to meet your needs.

Unity Helper Scripts

This document describes the helper scripts that are available for simplifying your testing
workflow. It describes the collection of optional Ruby scripts included in the auto directory of
your Unity installation. Neither Ruby nor these scripts are necessary for using Unity. They are
provided as a convenience for those who wish to use them.

Unity License

What’s an open source project without a license file? This brief document describes the terms
you’re agreeing to when you use this software. Basically, we want it to be useful to you in
whatever context you want to use it, but please don’t blame us if you run into problems.

Unity Project - ThrowTheSwitch.org



http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

Overview of the Folders

If you have obtained Unity through Github or something similar, you might be surprised by just
how much stuff you suddenly have staring you in the face. Don’t worry, Unity itself is very small.
The rest of it is just there to make your life easier. You can ignore it or use it at your
convenience. Here’s an overview of everything in the project.

e src — This is the code you care about! This folder contains a C file and two header
files. These three files are Unity.

e docs — You're reading this document, so it's possible you have found your way into this
folder already. This is where all the handy documentation can be found.
examples — This contains a few examples of using Unity.
extras — These are optional add-ons to Unity that are not part of the core project. If
you've reached us through James Grenning’s book, you’re going to want to look here.

e test — This is how Unity and its scripts are all tested. If you’re just using Unity, you'll
likely never need to go in here. If you are the lucky team member who gets to port Unity
to a new toolchain, this is a good place to verify everything is configured properly.

e auto — Here you will find helpful Ruby scripts for simplifying your test workflow. They
are purely optional and are not required to make use of Unity.

How to Create A Test File

Test files are C files. Most often you will create a single test file for each C module that you want
to test. The test file should include unity.h and the header for your C module to be tested.

Next, a test file will include a setUp () and tearDown () function. The setUp function can
contain anything you would like to run before each test. The tearDown function can contain
anything you would like to run after each test. Both functions accept no arguments and return
nothing. You may leave either or both of these blank if you have no need for them. If you're
using a compiler that is configured to make these functions optional, you may leave them off
completely. Not sure? Give it a try. If you compiler complains that it can’t find setUp or tearDown
when it links, you’ll know you need to at least include an empty function for these.

The majority of the file will be a series of test functions. Test functions follow the convention of
starting with the word “test” or “spec”. You don’t HAVE to name them this way, but it makes it
clear what functions are tests for other developers. Test functions take no arguments and
return nothing. All test accounting is handled internally in Unity.

Finally, at the bottom of your test file, you will write a main () function. This function will call
UNITY BEGIN (), then RUN TEST for each test, and finally UNITY END (). This is what will
actually trigger each of those test functions to run, so it is important that each function gets its
own RUN_TEST call.

Unity Project - ThrowTheSwitch.org



http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

Remembering to add each test to the main function can get to be tedious. If you enjoy using
helper scripts in your build process, you might consider making use of our handy
generate_test_runner.rb script. This will create the main function and all the calls for you,
assuming that you have followed the suggested naming conventions. In this case, there is no
need for you to include the main function in your test file at all.

When you’re done, your test file will look something like this:

finclude “unity.h”
#include “file to test.h”

void setUp(void) {
// set stuff up here

void tearDown (void) {
// clean stuff up here

void test function should doBlahAndBlah (void) {
//test stuff

void test function should doAlsoDoBlah (void) {
//more test stuff

int main(void) {
UNITY BEGIN ()
RUN TEST (test function should doBlahAndBlah) ;
RUN TEST (test function should doAlsoDoBlah);
return UNITY END() ;

It's possible that you will require more customization than this, eventually. For that sort of thing,
you're going to want to look at the configuration guide. This should be enough to get you going,
though.

How to Build and Run A Test File

This is the single biggest challenge to picking up a new unit testing framework, at least in a
language like C or C++. These languages are REALLY good at getting you “close to the metal”

Unity Project - ThrowTheSwitch.org


http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

(why is the phrase metal? Wouldn't it be more accurate to say “close to the silicon”?). While this
feature is usually a good thing, it can make testing more challenging.

You have two really good options for toolchains. Depending on where you’re coming from, it
might surprise you that neither of these options is running the unit tests on your hardware.
There are many reasons for this, but here’s a short version:

e On hardware, you have too many constraints (processing power, memory, etc)

e On hardware, you don’t have complete control over all registers.

e On hardware, unit testing is more challenging

e Unit testing isn’t System testing. Keep them separate.

Instead of running your tests on your actual hardware, most developers choose to develop them
as native applications (using gcc or MSVC for example) or as applications running on a
simulator. Either is a good option. Native apps have the advantages of being faster and easier
to set up. Simulator apps have the advantage of working with the same compiler as your target
application. The options for configuring these are discussed in the configuration guide.

To get either to work, you might need to make a few changes to the file containing your register
set (discussed later).

In either case, a test is built by linking unity, the test file, and the C file(s) being tested. These
files create an executable which can be run as the test set for that module. Then, this process is
repeated for the next test file. This flexibility of separating tests into individual executables
allows us to much more thoroughly unit test our system and it keeps all the test code out of our
final release!

Unity Project - ThrowTheSwitch.org



http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

