Unity Assertions Reference

Background and Overview

Super Condensed Version
e An assertion establishes truth (i.e. boolean True) for a single condition. Upon boolean
False, an assertion stops execution and reports the failure.
e Unity is mainly a rich collection of assertions and the support to gather up and easily
execute those assertions.
e The structure of Unity allows you to easily separate test assertions from source code in,
well, test code.
e Unity’s assertions:
o Come in many, many flavors to handle different C types and assertion cases.
o Use context to provide detailed and helpful failure messages.
o Document types, expected values, and basic behavior in your source code for
free.

Unity Is Several Things But Mainly It’s Assertions

One way to think of Unity is simply as a rich collection of assertions you can use to establish
whether your source code behaves the way you think it does. Unity provides a framework to
easily organize and execute those assertions in test code separate from your source code.

What’s an Assertion?

At their core, assertions are an establishment of truth—boolean truth. Was this thing equal to
that thing? Does that code doohickey have such-and-such property or not? You get the idea.
Assertions are executable code (to appreciate the big picture on this read up on the difference
between [link:Dynamic Verification and Static Analysis]). A failing assertion stops execution and
reports an error through some appropriate I/O channel (e.g. stdout, GUI, file, blinky light).

Fundamentally, for dynamic verification all you need is a single assertion mechanism. In fact,
that's what the assert () macro in C’s standard library is for. So why not just use it? Well, we
can do far better in the reporting department. C’s assert () is pretty dumb as-is and is
particularly poor for handling common data types like arrays, structs, etc. And, without some
other support, it's far too tempting to litter source code with C’s assert ()’s. It's generally much
cleaner, manageable, and more useful to separate test and source code in the way Unity
facilitates.

Unity’s Assertions: Helpful Messages and Free Source Code Documentation
Asserting a simple truth condition is valuable, but using the context of the assertion is even

more valuable. For instance, if you know you’re comparing bit flags and not just integers, then
why not use that context to give explicit, readable, bit-level feedback when an assertion fails?

Unity Project - ThrowTheSwitch.org

http://en.wikipedia.org/wiki/Assert.h
http://en.wikipedia.org/wiki/Assert.h
http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

That’s what Unity’s collection of assertions do—capture context to give you helpful, meaningful
assertion failure messages. In fact, the assertions themselves also serve as executable
documentation about types and values in your source code. So long as your tests remain
current with your source and all those tests pass, you have a detailed, up-to-date view of the
intent and mechanisms in your source code. And due to a wondrous mystery, well-tested code
usually tends to be well designed code.

Assertion Conventions and Configurations

Naming and Parameter Conventions

The convention of assertion parameters generally follows this order:
TEST ASSERT X({modifiers}, {expected}, actual, {size/count})

The very simplest assertion possible uses only a single “actual” parameter (e.g. a simple null
check).

“Actual” is the value being tested and unlike the other parameters in an assertion construction is
the only parameter present in all assertion variants.

“Modifiers” are masks, ranges, bit flag specifiers, floating point deltas.

“Expected” is your expected value (duh) to compare to an “actual” value; it's marked as an
optional parameter because some assertions only need a single “actual” parameter (e.g. null
check).

“Size/count” refers to string lengths, number of array elements, etc.

Many of Unity’s assertions are apparent duplications in that the same data type is handled by
several assertions. The differences among these are in how failure messages are presented.
For instance, a HEX variant of an assertion prints the expected and actual values of that
assertion formatted as hexadecimal.

TEST_ASSERT_X_MESSAGE Variants

All assertions are complemented with a variant that includes a simple string message as a final
parameter. The string you specify is appended to an assertion failure message in Unity output.

For brevity, the assertion variants with a message parameter are not listed below. Just tack on
~MESSAGE as the final component to any assertion name in the reference list below and add a
string as the final parameter.

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

Example:
TEST ASSERT X({modifiers}, {expected}, actual, {size/count})

becomes message-ified like thus...

TEST ASSERT X MESSAGE({modifiers}, {expected}, actual, {size/count},
message)

TEST_ASSERT_X_ARRAY Variants

Unity provides a collection of assertions for arrays containing a variety of types. These are
documented in the Array section below. These are almost on par with the MESSAGE variants of
Unity’s Asserts in that for pretty much any Unity type assertion you can tack on ARRAY and run
assertions on an entire block of memory.

TEST ASSERT EQUAL TYPEX ARRAY (expected, actual, {size/count})

“Expected” is an array itself.
“Size/count” is one or two parameters necessary to establish the number of array elements and
perhaps the length of elements within the array.

Notes:
e The MESSAGE variant convention still applies here to array assertions. The MESSAGE
variants of the ARRAY assertions have names ending with ARRAY MESSAGE.
e Assertions for handling arrays of floating point values are grouped with float and double
assertions (see immediately following section).

Configuration

Floating Point Support Is Optional

Support for floating point types is configurable. That is, by defining the appropriate preprocessor
symbols, floats and doubles can be individually enabled or disabled in Unity code. This is useful
for embedded targets with no floating point math support (i.e. Unity compiles free of errors for
fixed point only platforms). See Unity documentation for specifics.

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

Maximum Data Type Width Is Configurable

Not all targets support 64 bit wide types or even 32 bit wide types. Define the appropriate
preprocessor symbols and Unity will omit all operations from compilation that exceed the
maximum width of your target. See Unity documentation for specifics.

The Assertions in All Their Blessed Glory

Basic Fail and Ignore

TEST FAIL()
This fella is most often used in special conditions where your test code is performing

logic beyond a simple assertion. That is, in practice, TEST FAIL () will always be found
inside a conditional code block.

Examples:
e [Executing a state machine multiple times that increments a counter your test
code then verifies as a final step.
e Triggering an exception and verifying it (as in Try / Catch / Throw — see the
CException project).

TEST IGNORE ()
Marks a test case (i.e. function meant to contain test assertions) as ignored. Usually this
is employed as a breadcrumb to come back and implement a test case. An ignored test
case has effects if other assertions are in the enclosing test case (see Unity
documentation for more).

Boolean

TEST ASSERT (condition)

TEST ASSERT TRUE (condition)

TEST ASSERT FALSE (condition)

TEST ASSERT UNLESS (condition)
A simple wording variation on TEST ASSERT FALSE. The semantics of
TEST ASSERT UNLESS aid readability in certain test constructions or conditional
statements.

TEST ASSERT NULL (pointer)
TEST ASSERT NOT NULL (pointer)

Unity Project - ThrowTheSwitch.org

https://github.com/ThrowTheSwitch/CException
http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

Signed and Unsigned Integers (of all sizes)

Large integer sizes can be disabled for build targets that do not support them. For example, if
your target only supports up to 16 bit types, by defining the appropriate symbols Unity can be
configured to omit 32 and 64 bit operations that would break compilation (see Unity
documentation for more). Refer to Advanced Asserting later in this document for advice on

dealing with other word sizes.

TEST ASSERT EQUAL INT (expected, actual)
TEST ASSERT EQUAL INT8 (expected, actual)
TEST ASSERT EQUAL INT16 (expected, actual)
TEST ASSERT EQUAL INT32 (expected, actual)
TEST ASSERT EQUAL INT64 (expected, actual)
TEST ASSERT EQUAL (expected, actual)

TEST ASSERT NOT EQUAL (expected, actual)
TEST ASSERT EQUAL UINT (expected, actual)
TEST ASSERT EQUAL UINT8 (expected, actual)
TEST ASSERT EQUAL UINT16 (expected, actual)
TEST ASSERT EQUAL UINT32 (expected, actual)
TEST ASSERT EQUAL UINT64 (expected, actual)

Unsigned Integers (of all sizes) in Hexadecimal

All _HEX assertions are identical in function to unsigned integer assertions but produce failure
messages with the expected and actual values formatted in hexadecimal. Unity output is big

endian.

TEST ASSERT EQUAL HEX (expected, actual)

TEST ASSERT EQUAL HEX8 (expected, actual)
TEST ASSERT EQUAL HEX16 (expected, actual)
TEST ASSERT EQUAL HEX32 (expected, actual)
TEST ASSERT EQUAL HEX64 (expected, actual)

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

Masked and Bit-level Assertions

Masked and bit-level assertions produce output formatted in hexadecimal. Unity output is big
endian.

TEST ASSERT BITS (mask, expected, actual)
Only compares the masked (i.e. high) bits of expected and actual parameters.

TEST ASSERT BITS HIGH (mask, actual)
Asserts the masked bits of the actual parameter are high.

TEST ASSERT BITS LOW (mask, actual)
Asserts the masked bits of the actual parameter are low.

TEST ASSERT BIT HIGH (bit, actual)
Asserts the specified bit of the actual parameter is high.

TEST ASSERT BIT LOW (bit, actual)
Asserts the specified bit of the actual parameter is low.

Integer Ranges (of all sizes)

These assertions verify that the expected parameter is within +/- delta (inclusive) of the
actual parameter. For example, if the expected value is 10 and the delta is 3 then the
assertion will fail for any value outside the range of 7—13.

TEST ASSERT INT WITHIN (delta, expected, actual)
TEST ASSERT INT8 WITHIN (delta, expected, actual)
TEST ASSERT INTl6 WITHIN (delta, expected, actual)
TEST ASSERT INT32 WITHIN (delta, expected, actual)
TEST ASSERT INT64 WITHIN (delta, expected, actual)
TEST ASSERT UINT WITHIN (delta, expected, actual)
TEST ASSERT UINT8 WITHIN (delta, expected, actual)
TEST ASSERT UINT16 WITHIN (delta, expected, actual)
TEST ASSERT UINT32 WITHIN (delta, expected, actual)
TEST ASSERT UINT64 WITHIN (delta, expected, actual)
TEST ASSERT HEX WITHIN (delta, expected, actual)
TEST ASSERT HEX8 WITHIN (delta, expected, actual)
TEST ASSERT HEX16 WITHIN (delta, expected, actual)
TEST ASSERT HEX32 WITHIN (delta, expected, actual)
TEST ASSERT HEX64 WITHIN (delta, expected, actual)

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

Structs and Strings

TEST ASSERT EQUAL PTR (expected, actual)
Asserts that the pointers point to the same memory location.

TEST ASSERT EQUAL STRING (expected, actual)
Asserts that the null terminated (‘\ 0’) strings are identical. If strings are of different
lengths or any portion of the strings before their terminators differ, the assertion fails.
Two NULL strings (i.e. zero length) are considered equivalent.

TEST ASSERT EQUAL MEMORY (expected, actual, len)
Asserts that the contents of the memory specified by the expected and actual
pointers is identical. The size of the memory blocks in bytes is specified by the 1en
parameter.

Arrays

expected and actual parameters are both arrays. num elements specifies the number of
elements in the arrays to compare.

_HEX assertions produce failure messages with expected and actual array contents formatted in
hexadecimal.

For array of strings comparison behavior, see comments for TEST ASSERT EQUAL STRING
in the preceding section.

Assertions fail upon the first element in the compared arrays found not to match. Failure
messages specify the array index of the failed comparison.

TEST ASSERT EQUAL INT ARRAY (expected, actual, num elements)
TEST ASSERT EQUAL INT8 ARRAY (expected, actual, num elements)
TEST ASSERT EQUAL INT16 ARRAY (expected, actual, num elements)
TEST ASSERT EQUAL INT32 ARRAY (expected, actual, num elements)
TEST ASSERT EQUAL INT64 ARRAY (expected, actual, num elements)
TEST ASSERT EQUAL UINT ARRAY (expected, actual, num elements)
TEST ASSERT EQUAL UINT8 ARRAY (expected, actual, num elements)
TEST ASSERT EQUAL UINT16 ARRAY (expected, actual, num elements)
TEST ASSERT EQUAL UINT32 ARRAY (expected, actual, num elements)
TEST ASSERT EQUAL UINT64 ARRAY (expected, actual, num elements)
TEST ASSERT EQUAL HEX ARRAY (expected, actual, num elements)

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

TEST ASSERT EQUAL HEX8 ARRAY (expected, actual, num elements)

TEST ASSERT EQUAL HEX16 ARRAY (expected, actual, num elements)

TEST ASSERT EQUAL HEX32 ARRAY (expected, actual, num elements)

TEST ASSERT EQUAL HEX64 ARRAY (expected, actual, num elements)

TEST ASSERT EQUAL PTR ARRAY (expected, actual, num elements)

TEST ASSERT EQUAL STRING ARRAY (expected, actual, num elements)

TEST ASSERT EQUAL MEMORY ARRAY (expected, actual, len, num elements)
len is the memory in bytes to be compared at each array element.

Floating Point (If enabled)

TEST ASSERT FLOAT WITHIN (delta, expected, actual)
Asserts that the actual value is within +/- delta of the expected value. The nature

of floating point representation is such that exact evaluations of equality are not
guaranteed.

TEST ASSERT EQUAL FLOAT (expected, actual)
Asserts that the actual value is “close enough to be considered equal” to the
expected value. If you are curious about the details, refer to the Advanced Asserting
section for more details on this. Omitting a user-specified delta in a floating point
assertion is both a shorthand convenience and a requirement of code generation
conventions for CMock.

TEST ASSERT EQUAL FLOAT ARRAY (expected, actual, num elements)
See Array assertion section for details. Note that individual array element float
comparisons are executed using TEST ASSERT EQUAL FLOAT. That is, user specified
delta comparison values requires a custom-implemented floating point array assertion.

TEST ASSERT FLOAT IS INF (actual)

Asserts that actual parameter is equivalent to positive infinity floating point
representation.

TEST ASSERT FLOAT IS NEG_INF (actual)

Asserts that actual parameter is equivalent to negative infinity floating point
representation.

TEST ASSERT FLOAT IS NAN (actual)
Asserts that actual parameter is a Not A Number floating point representation.

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

TEST ASSERT FLOAT IS DETERMINATE (actual)

Asserts that actual parameter is a floating point representation usable for

mathematical operations. That is, the actual parameter is neither positive infinity nor
negative infinity nor Not A Number floating point representations.

TEST ASSERT FLOAT IS NOT INF (actual)

Asserts that actual parameter is a value other than positive infinity floating point
representation.

TEST ASSERT FLOAT IS NOT NEG INF (actual)

Asserts that actual parameter is a value other than negative infinity floating point
representation.

TEST ASSERT FLOAT IS NOT NAN (actual)

Asserts that actual parameter is a value other than Not A Number floating point
representation.

TEST ASSERT FLOAT IS NOT DETERMINATE (actual)

Asserts that actual parameter is not usable for mathematical operations. That is, the

actual parameter is either positive infinity or negative infinity or Not A Number floating
point representations.

Double (If enabled)

TEST ASSERT DOUBLE WITHIN

(delta, expected, actual)

Asserts that the actual value is within +/- delta of the expected value. The nature

of floating point representation is such that exact evaluations of equality are not
guaranteed.

TEST ASSERT EQUAL DOUBLE (expected, actual)

Asserts that the actual value is “close enough to be considered equal” to the
expected value. If you are curious about the details, refer to the Advanced Asserting
section for more details. Omitting a user-specified delta in a floating point assertion is
both a shorthand convenience and a requirement of code generation conventions for
CMock.

TEST ASSERT EQUAL DOUBLE ARRAY (expected, actual, num elements)
See Array assertion section for details. Note that individual array element double

comparisons are executed using TEST ASSERT EQUAL DOUBLE. Thatis, user

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

specified delta comparison values requires a custom-implemented double array
assertion.

TEST ASSERT DOUBLE IS INF (actual)

Asserts that actual parameter is equivalent to positive infinity floating point
representation.

TEST ASSERT DOUBLE IS NEG INF (actual)

Asserts that actual parameter is equivalent to negative infinity floating point
representation.

TEST ASSERT DOUBLE IS NAN (actual)

Asserts that actual parameter is a Not A Number floating point representation.
TEST ASSERT DOUBLE IS DETERMINATE

(actual)
Asserts that actual parameter is a floating point representation usable for

mathematical operations. That is, the actual parameter is neither positive infinity nor
negative infinity nor Not A Number floating point representations.
TEST ASSERT DOUBLE IS NOT INF

(actual)

Asserts that actual parameter is a value other than positive infinity floating point
representation.

TEST ASSERT DOUBLE IS NOT NEG INF (actual)
Asserts that actual parameter is a value other than negative infinity floating point
representation.

TEST ASSERT DOUBLE IS NOT NAN (actual)

Asserts that actual parameter is a value other than Not A Number floating point
representation.

TEST ASSERT DOUBLE IS NOT DETERMINATE (actual)
Asserts that actual parameter is not usable for mathematical operations. That is, the

actual parameter is either positive infinity or negative infinity or Not A Number floating
point representations.

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

Advanced Asserting: Details On Tricky Assertions

This section helps you understand how to deal with some of the trickier assertion situations you
may run into. It will give you a glimpse into some of the under-the-hood details of Unity’s
assertion mechanisms. If you're one of those people who likes to know what is going on in the
background, read on. If not, feel free to ignore the rest of this document until you need it.

How do the EQUAL assertions work for FLOAT and DOUBLE?

As you may know, directly checking for equality between a pair of floats or a pair of doubles is
sloppy at best and an outright no-no at worst. Floating point values can often be represented in
multiple ways, particularly after a series of operations on a value. Initializing a variable to the
value of 2.0 is likely to result in a floating point representation of 2 x 2°, but a series of
mathematical operations might result in a representation of 8 x 2 that also evaluates to a value
of 2. At some point repeated operations cause equality checks to fail.

So Unity doesn’t do direct floating point comparisons for equality. Instead, it checks if two
floating point values are “really close.” If you leave Unity running with defaults, “really close”
means “within a significant bit or two.” Under the hood, TEST ASSERT EQUAL FLOAT is really
TEST ASSERT FLOAT WITHIN with the delta parameter calculated on the fly. For single
precision, delta is the expected value multiplied by 0.00001, producing a very small proportional
range around the expected value.

If you are expecting a value of 20,000.0 the delta is calculated to be 0.2. So any value between
19,999.8 and 20,000.2 will satisfy the equality check. This works out to be roughly a single bit of
range for a single-precision number, and that’s just about as tight a tolerance as you can
reasonably get from a floating point value.

So what happens when it's zero? Zero—even more than other floating point values—can be
represented many different ways. It doesn’t matter if you have 0 x 2° or 0 x 2%, It’s still zero,
right? Luckily, if you subtract these values from each other, they will always produce a
difference of zero, which will still fall between 0 plus or minus a delta of 0. So it still works!

Double precision floating point numbers use a much smaller multiplier, again approximating a
single bit of error.

If you don’t like these ranges and you want to make your floating point equality assertions less
strict, you can change these multipliers to whatever you like by defining
UNITY_FLOAT_PRECISION and UNITY_DOUBLE_PRECISION. See Unity documentation for
more.

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

How do we deal with targets with non-standard int sizes?

It's “fun” that C is a standard where something as fundamental as an integer varies by target.
According to the C standard, an int is to be the target’s natural register size, and it should be
at least 16-bits and a multiple of a byte. It also guarantees an order of sizes:

char <= short <= int <= long <= long long

Most often, int is 32-bits. In many cases in the embedded world, int is 16-bits. There are rare
microcontrollers out there that have 24-bit integers, and this remains perfectly standard C.

To make things even more interesting, there are compilers and targets out there that have a
hard choice to make. What if their natural register size is 10-bits or 12-bits? Clearly they can’t
fulfill both the requirement to be at least 16-bits AND the requirement to match the natural
register size. In these situations, they often choose the natural register size, leaving us with
something like this:

char (8 bit) <= short (12 bit) <= int (12 bit) <= long (16 bit)

Um... yikes. It's obviously breaking a rule or two... but they had to break SOME rules, so they
made a choice.

When the C99 standard rolled around, it introduced alternate standard-size types. It also
introduced macros for pulling in MIN/MAX values for your integer types. It's glorious!
Unfortunately, many embedded compilers can’t be relied upon to use the C99 types
(Sometimes because they have weird register sizes as described above. Sometimes because
they don’t feel like it?).

A goal of Unity from the beginning was to support every combination of microcontroller or
microprocessor and C compiler. Over time, we’ve gotten really close to this. There are a few
tricks that you should be aware of, though, if you’re going to do this effectively on some of these
more idiosyncratic targets.

First, when setting up Unity for a new target, you’re going to want to pay special attention to the
macros for automatically detecting types (where available) or manually configuring them
yourself. You can get information on both of these in Unity’s documentation.

What about the times where you suddenly need to deal with something odd, like a 24-bit int?
The simplest solution is to use the next size up. If you have a 24-bit int, configure Unity to use
32-bit integers. If you have a 12-bit int, configure Unity to use 16 bits. There are two ways this
is going to affect you:

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

1. When Unity displays errors for you, it's going to pad the upper unused bits with zeros.

2. You're going to have to be careful of assertions that perform signed operations,
particularly TEST ASSERT INT WITHIN. Such assertions might wrap your int in the
wrong place, and you could experience false failures. You can always back down to a
simple TEST ASSERT and do the operations yourself.

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

