Unity Configuration Guide

C Standards, Compilers and Microcontrollers

The embedded software world contains its challenges. Compilers support different revisions of
the C Standard. They ignore requirements in places, sometimes to make the language more
usable in some special regard. Sometimes it's to simplify their support. Sometimes it's due to
specific quirks of the microcontroller they are targeting. Simulators add another dimension to
this menagerie.

Unity is designed to run on almost anything that is targeted by a C compiler. It would be
awesome if this could be done with zero configuration. While there are some targets that come
close to this dream, it is sadly not universal. It is likely that you are going to need at least a
couple of the configuration options described in this document.

All of Unity’s configuration options are #defines. Most of these are simple definitions. A
couple are macros with arguments. They live inside the unity_internals.h header file. We don't
necessarily recommend opening that file unless you really need to. That file is proof that a
cross-platform library is challenging to build. From a more positive perspective, it is also proof
that a great deal of complexity can be centralized primarily to one place in order to provide a
more consistent and simple experience elsewhere.

Using These Options
It doesn’t matter if you're using a target-specific compiler and a simulator or a native compiler. In
either case, you've got a couple choices for configuring these options:

1. Because these options are specified via C defines, you can pass most of these options
to your compiler through command line compiler flags. Even if you're using an
embedded target that forces you to use their overbearing IDE for all configuration, there
will be a place somewhere in your project to configure defines for your compiler.

2. You can create a custom unity config.h configuration file (presentin your
toolchain’s search paths). In this file, you will list definitions and macros specific to your
target. All you must do is define UNITY INCLUDE CONFIG H and Unity will rely on
unity config.h forany further definitions it may need.

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

The Options

Integer Types

If you've been a C developer for long, you probably already know that C’s concept of an integer
varies from target to target. The C Standard has rules about the int matching the register size
of the target microprocessor. It has rules about the int and how its size relates to other integer
types. An int on one target might be 16 bits while on another target it might be 64. There are
more specific types in compilers compliant with C99 or later, but that’s certainly not every
compiler you are likely to encounter. Therefore, Unity has a number of features for helping to
adjust itself to match your required integer sizes. It starts off by trying to do it automatically.

UNITY EXCLUDE STDINT H
The first thing that Unity does to guess your types is check stdint.h. This file includes
defines like UINT MAX that Unity can make use of to learn a lot about your system. It's
possible you don’t want it to do this (um. why not?) or (more likely) it's possible that your
system doesn’t support stdint . h. If that’s the case, you're going to want to define this.
That way, Unity will know to skip the inclusion of this file and you won’t be left with a
compiler error.

Example:
#define UNITY EXCLUDE STDINT H

UNITY EXCLUDE LIMITS H
The second attempt to guess your types is to check 1imits.h. Some compilers that
don’t support stdint.h could include 1imits.h instead. If you don’t want Unity to
check this file either, define this to make it skip the inclusion.

Example:
#define UNITY EXCLUDE LIMITS H

UNITY EXCLUDE SIZEOF
The third and final attempt to guess your types is to use the sizeof () operator. Even if
the first two options don’t work, this one covers most cases. There js a rare compiler or
two out there that doesn’t support sizeof() in the preprocessing stage, though. For these,
you have the ability to disable this feature as well.

Example:
#define UNITY EXCLUDE SIZEOF

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

If you've disabled all of the automatic options above, you’re going to have to do the
configuration yourself. Don’t worry. Even this isn’t too bad... there are just a handful of defines
that you are going to specify if you don't like the defaults.

UNITY INT WIDTH
Define this to be the number of bits an int takes up on your system. The default, if not
autodetected, is 32 bits.

Example:
#define UNITY INT WIDTH 16

UNITY LONG WIDTH
Define this to be the number of bits a 1ong takes up on your system. The default, if not
autodetected, is 32 bits. This is used to figure out what kind of 64-bit support your
system can handle. Does it need to specify a 1ong ora long long to get a 64-bit
value. On 16-bit systems, this option is going to be ignored.

Example:
#define UNITY LONG WIDTH 16

UNITY POINTER WIDTH
Define this to be the number of bits a pointer takes up on your system. The default, if not
autodetected, is 32-bits. If you're getting ugly compiler warnings about casting from
pointers, this is the one to look at.

Example:
#define UNITY POINTER WIDTH 64

UNITY INCLUDE 64
Unity will automatically include 64-bit support if it auto-detects it, or if your int, 1ong, or
pointer widths are greater than 32-bits. Define this to enable 64-bit support if none of the
other options already did it for you. There can be a significant size and speed impact to
enabling 64-bit support on small targets, so don't define it if you don't need it.

Example:
#define UNITY INCLUDE 64

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

Floating Point Types

In the embedded world, it's not uncommon for targets to have no support for floating point
operations at all or to have support that is limited to only single precision. We are able to guess
integer sizes on the fly because integers are always available in at least one size. Floating point,
on the other hand, is sometimes not available at all. Trying to include f1oat.h on these
platforms would result in an error. This leaves manual configuration as the only option.

UNITY INCLUDE FLOAT

UNITY EXCLUDE FLOAT

UNITY INCLUDE DOUBLE

UNITY EXCLUDE DOUBLE
By default, Unity guesses that you will want single precision floating point support, but
not double precision. It's easy to change either of these using the include and exclude
options here. You may include neither, either, or both, as suits your needs. For features
that are enabled, the following floating point options also become available.

Example:

//what manner of strange processor is this?
#define UNITY EXCLUDE FLOAT

#define UNITY INCLUDE DOUBLE

UNITY FLOAT VERBOSE

UNITY DOUBLE VERBOSE
Unity aims for as small of a footprint as possible and avoids most standard library calls
(some embedded platforms don’t have a standard library!). Because of this, its routines
for printing integer values are minimalist and hand-coded. To keep Unity universal,
though, we chose to not develop our own floating point print routines. Instead, the
display of floating point values during a failure are optional. By default, Unity will not print
the actual results of floating point assertion failure. So a failed assertion will produce a
message like “vValues Not Within Delta”. If you would like verbose failure
messages for floating point assertions, use these options to give more explicit failure
messages (e.g. "Expected 4.56 Was 4.68"). Note that this feature requires the
use of sprintf so might not be desirable in all cases.

Example:
#define UNITY DOUBLE VERBOSE

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

UNITY FLOAT TYPE
If enabled, Unity assumes you want your FLOAT asserts to compare standard C floats. If
your compiler supports a specialty floating point type, you can always override this
behavior by using this definition.

Example:
#define UNITY FLOAT TYPE floatl6 t

UNITY DOUBLE TYPE
If enabled, Unity assumes you want your DOUBLE asserts to compare standard C
doubles. If you would like to change this, you can specify something else by using this
option. For example, defining UNITY DOUBLE TYPE to long double could enable
gargantuan floating point types on your 64-bit processor instead of the standard
double.

Example:
#define UNITY DOUBLE TYPE long double

UNITY FLOAT PRECISION

UNITY DOUBLE PRECISION
If you look up UNITY ASSERT EQUAL FLOAT and UNITY ASSERT EQUAL DOUBLE
as documented in the big daddy Unity Assertion Guide, you will learn that they are not
really asserting that two values are equal but rather that two values are “close enough”
to equal. “Close enough” is controlled by these precision configuration options. If you are
working with 32-bit floats and/or 64-bit doubles (the normal on most processors), you
should have no need to change these options. They are both set to give you
approximately 1 significant bit in either direction. The float precision is 0.00001 while the
double is 10" For further details on how this works, see the appendix of the Unity
Assertion Guide.

Example:
#define UNITY FLOAT PRECISION 0.001f

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

Toolset Customization

In addition to the options listed above, there are a number of other options which will come in
handy to customize Unity’s behavior for your specific toolchain. It is possible that you may not
need to touch any of these... but certain platforms, particularly those running in simulators, may
need to jump through extra hoops to operate properly. These macros will help in those
situations.

UNITY OUTPUT CHAR(a)

UNITY OUTPUT FLUSH()

UNITY OUTPUT START ()

UNITY OUTPUT COMPLETE ()
By default, Unity prints its results to stdout as it runs. This works perfectly fine in most
situations where you are using a native compiler for testing. It works on some simulators
as well so long as they have stdout routed back to the command line. There are times,
however, where the simulator will lack support for dumping results or you will want to
route results elsewhere for other reasons. In these cases, you should define the
UNITY OUTPUT CHAR macro. This macro accepts a single character at a time (as an
int, since this is the parameter type of the standard C putchar function most
commonly used). You may replace this with whatever function call you like.

Example:

Say you are forced to run your test suite on an embedded processor with no stdout
option. You decide to route your test result output to a custom serial RS232 putc ()
function you wrote like thus:

#define UNITY OUTPUT CHAR(a) RS232 putc(a)

#define UNITY OUTPUT START() RS232 config(115200,1,8,0)
#define UNITY OUTPUT FLUSH() RS232 flush()

#define UNITY OUTPUT COMPLETE () RS232 close()

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

UNITY SUPPORT WEAK
For some targets, Unity can make the otherwise required setUp () and tearDown ()
functions optional. This is a nice convenience for test writers since setUp and
tearDown don’t often actually do anything. If you're using gcc or clang, this option is
automatically defined for you. Other compilers can also support this behavior, if they
support a C feature called weak functions. A weak function is a function that is compiled
into your executable unless a non-weak version of the same function is defined
elsewhere. If a non-weak version is found, the weak version is ignored as if it never
existed. If your compiler supports this feature, you can let Unity know by defining
UNITY SUPPORT WEAK as the function attributes that would need to be applied to
identify a function as weak. If your compiler lacks support for weak functions, you will
always need to define setUp and tearDown functions (though they can be and often
will be just empty). The most common options for this feature are:

Example:
#define UNITY SUPPORT WEAK weak
#define UNITY SUPPORT WEAK _ attribute ((weak))

UNITY PTR ATTRIBUTE
Some compilers require a custom attribute to be assigned to pointers, like near or far.
In these cases, you can give Unity a safe default for these by defining this option with
the attribute you would like.

Example:
#define UNITY PTR ATTRIBUTE attribute ((far))
#define UNITY PTR ATTRIBUTE near

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

Getting Into The Guts

There will be cases where the options above aren’t quite going to get everything perfect. They
are likely sufficient for any situation where you are compiling and executing your tests with a
native toolchain (e.g. clang on Mac). These options may even get you through the majority of
cases encountered in working with a target simulator run from your local command line. But
especially if you must run your test suite on your target hardware, your Unity configuration will
require special help. This special help will usually reside in one of two places: the main ()
function or the RUN_TEST macro. Let’s look at how these work.

main ()

Each test module is compiled and run on its own, separate from the other test files in your
project. Each test file, therefore, has a main function. This main function will need to contain
whatever code is necessary to initialize your system to a workable state. This is particularly true
for situations where you must set up a memory map or initialize a communication channel for
the output of your test results.

A simple main function looks something like this:

int main(void) {
UNITY_BEGIN();
RUN TEST (test TheFirst);
RUN TEST (test TheSecond);
RUN TEST (test TheThird);
return UNITY END();

You can see that our main function doesn’t bother taking any arguments. For our most
barebones case, we’'ll never have arguments because we just run all the tests each time.
Instead, we start by calling UNITY BEGIN. We run each test (in whatever order we wish).
Finally, we call UNITY END, returning its return value (which is the total number of failures).

It should be easy to see that you can add code before any test cases are run or after all the test
cases have completed. This allows you to do any needed system-wide setup or teardown that
might be required for your special circumstances.

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

RUN TEST

The RUN_TEST macro is called with each test case function. Its job is to perform whatever setup
and teardown is necessary for executing a single test case function. This includes catching
failures, calling the test module’s setUp () and tearDown () functions, and calling
UnityConcludeTest (). If using CMock or test coverage, there will be additional stubs in use
here. A simple minimalist RUN_TEST macro looks something like this:

#define RUN TEST (testfunc) \

UNITY NEW TEST (#testfunc) \

if (TEST PROTECT()) { \
setUp (); \
testfunc(); \

oA

if (TEST PROTECT () && (!TEST IS IGNORED)) \
tearDown () ; \

UnityConcludeTest () ;

So that’s quite a macro, huh? It gives you a glimpse of what kind of stuff Unity has to deal with
for every single test case. For each test case, we declare that it is a new test. Then we run
setUp and our test function. These are run within a TEST PROTECT block, the function of
which is to handle failures that occur during the test. Then, assuming our test is still running and
hasn’t been ignored, we run tearDown. No matter what, our last step is to conclude this test
before moving on to the next.

Let’s say you need to add a call to fsync to force all of your output data to flush to a file after
each test. You could easily insert this after your UnityConcludeTest call. Maybe you want to
write an xml tag before and after each result set. Again, you could do this by adding lines to this
macro. Updates to this macro are for the occasions when you need an action before or after
every single test case throughout your entire suite of tests.

Happy Porting

The defines and macros in this guide should help you port Unity to just about any C target we
can imagine. If you run into a snag or two, don’t be afraid of asking for help on the forums. We
love a good challenge!

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

