Unity Helper Scripts

With a Little Help From Our Friends

Sometimes what it takes to be a really efficient C programmer is a little non-C. The Unity project
includes a couple Ruby scripts for making your life just a tad easier. They are completely
optional. If you choose to use them, you’ll need a copy of Ruby, of course. Just install whatever
the latest version is, and it is likely to work. You can find Ruby at ruby-lang.org.

generate_test runner.rb

Are you tired of creating your own main function in your test file? Do you keep
forgetting to add a RUN_TEST call when you add a new test case to your suite? Do you
want to use CMock or other fancy add-ons but don’t want to figure out how to create
your own RUN_TEST macro?

Well then we have the perfect script for you!

The generate test runner script processes a given test file and automatically
creates a separate test runner file that includes main to execute the test cases within
the scanned test file. All you do then is add the generated runner to your list of files to
be compiled and linked, and presto you’re done!

This script searches your test file for void function signatures having a function name
beginning with “test” or “spec’. It treats each of these functions as a test case and builds
up a test suite of them. For example, the following includes three test cases:

void testVerifyThatUnityIsAwesomeAndWillMakeYourLifeEasier (void)
{
ASSERT TRUE (1) ;
}
void test FunctionName should WorkProperlyAndReturn8 (void) {
ASSERT EQUAL INT (8, FunctionName ()):;
}
void spec Function should DoWhatItIsSupposedToDo (void) {
ASSERT NOT NULL (Function (5));

Unity Project - ThrowTheSwitch.org

https://www.ruby-lang.org/
http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

You can run this script a couple of ways. The first is from the command line:
ruby generate test runner.rb TestFile.c NameOfRunner.c

Alternatively, if you include only the test file parameter, the script will copy the name of
the test file and automatically append “_Runner” to the name of the generated file. The
example immediately below will create TestFile_Runner.c.

ruby generate test runner.rb TestFile.c

You can also add a YAML file to configure extra options. Conveniently, this YAML file is
of the same format as that used by Unity and CMock. So if you are using YAML files
already, you can simply pass the very same file into the generator script.

ruby generate test runner.rb TestFile.c my config.yml

The contents of the YAML file my config.yml could look something like the example
below. If you’re wondering what some of these options do, you’re going to love the next
section of this document.

runity:
:includes:
- stdio.h
- microdefs.h
:cexception: 1
:suit setup: “blah = malloc(1024);”
:suite teardown: “free(blah);”

If you would like to force your generated test runner to include one or more header files,
you can just include those at the command line too. Just make sure these are after the
YAML file, if you are using one:

ruby generate test runner.rb TestFile.c my config.yml extras.h

Another option, particularly if you are already using Ruby to orchestrate your builds—or
more likely the Ruby-based build tool Rake—is requiring this script directly. Anything
that you would have specified in a YAML file can be passed to the script as part of a

Unity Project - ThrowTheSwitch.org

http://www.yaml.org/
http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

hash. Let’s push the exact same requirement set as we did above but this time through
Ruby code directly:

require “generate test runner.rb”

options = {
:includes => [“stdio.h”, “microdefs.h”],
:cexception => 1,
:suite setup => “blah = malloc(1024);”,
:suite teardown => “free(blah);”

}

UnityTestRunnerGenerator.new.run (testfile, runner name, options)

If you have multiple files to generate in a build script (such as a Rakefile), you might
want to instantiate a generator object with your options and call it to generate each
runner thereafter. Like thus:

gen = UnityTestRunnerGenerator.new (options)
test files.each do |[f|
gen.run(f, File.basename (f,’.c’)+”Runner.c”

end

Options accepted by generate_test_runner.rb:

The following options are available when executing generate test runner. You
may pass these as a Ruby hash directly or specify them in a YAML file, both of which
are described above. In the examples directory, Example 3’s Rakefile demonstrates
using a Ruby hash.

:includes
This option specifies an array of file names to be #include’d at the top of your
runner C file. You might use it to reference custom types or anything else
universally needed in your generated runners.

:suite setup
Define this option with C code to be executed before any test cases are run.

:suite teardown
Define this option with C code to be executed after all test cases have finished.

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

:enforce strict ordering
This option should be defined if you have the strict order feature enabled in
CMock (see CMock documentation). This generates extra variables required for
everything to run smoothly. If you provide the same YAML to the generator as
used in CMock’s configuration, you’ve already configured the generator properly.

:plugins
This option specifies an array of plugins to be used (of course, the array can
contain only a single plugin). This is your opportunity to enable support for
CException support, which will add a check for unhandled exceptions in each
test, reporting a failure if one is detected. To enable this feature using Ruby:

:plugins => [:cexception]
Or as a yaml file:

:plugins:

—-:cexception

If you are using CMock, it is very likely that you are already passing an array of
plugins to CMock. You can just use the same array here. This script will just
ignore the plugins that don’t require additional support.

unity test summary.rb

A Unity test file contains one or more test case functions. Each test case can pass, fail,
or be ignored. Each test file is run individually producing results for its collection of test
cases. A given project will almost certainly be composed of multiple test files. Therefore,
the suite of tests is comprised of one or more test cases spread across one or more test
files. This script aggregates individual test file results to generate a summary of all
executed test cases. The output includes how many tests were run, how many were
ignored, and how many failed. In addition, the output includes a listing of which specific
tests were ignored and failed. A good example of the breadth and details of these
results can be found in the examples directory. Intentionally ignored and failing tests in
this project generate corresponding entries in the summary report.

If you're interested in other (prettier?) output formats, check into the Ceedling build tool
project (ceedling.sourceforge.net) that works with Unity and CMock and supports
xunit-style xml as well as other goodies.

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

This script assumes the existence of files ending with the extensions . testpass and
.testfail. The contents of these files includes the test results summary
corresponding to each test file executed with the extension set according to the
presence or absence of failures for that test file. The script searches a specified path for
these files, opens each one it finds, parses the results, and aggregates and prints a
summary. Calling it from the command line looks like this:

ruby unity test summary.rb build/test/

You can optionally specify a root path as well. This is really helpful when you are using
relative paths in your tools’ setup, but you want to pull the summary into an IDE like
Eclipse for clickable shortcuts.

ruby unity test summary.rb build/test/ ~/projects/myproject/
Or, if you’re more of a Windows sort of person:
ruby unity test summary.rb build\teat\ C:\projects\myproject\

When configured correctly, you'll see a final summary, like so:

blah.c:87:test sandwiches should HaveCondiments:FAIL:Expected 1 was O
meh.c:38:test soda should BeCalledPop:FAIL:Expected “pop” was “coke”

45 TOTAL TESTS 2 TOTAL FAILURES 1 IGNORED

How convenient is that?

Unity Project - ThrowTheSwitch.org

http://throwtheswitch.org/
http://karlesky.net/
http://vandervoord.net/

