123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 |
- #if !defined(MAX_TIMERS)
- #define MAX_TIMERS MAX_WORKER_THREADS
- #endif
- typedef int (*taction)(void *arg);
- struct ttimer {
- double time;
- double period;
- taction action;
- void *arg;
- };
- struct ttimers {
- pthread_t threadid; /* Timer thread ID */
- pthread_mutex_t mutex; /* Protects timer lists */
- struct ttimer timers[MAX_TIMERS]; /* List of timers */
- unsigned timer_count; /* Current size of timer list */
- };
- static double
- timer_getcurrenttime(void)
- {
- #if defined(_WIN32)
- /* GetTickCount returns milliseconds since system start as
- * unsigned 32 bit value. It will wrap around every 49.7 days.
- * We need to use a 64 bit counter (will wrap in 500 mio. years),
- * by adding the 32 bit difference since the last call to a
- * 64 bit counter. This algorithm will only work, if this
- * function is called at least once every 7 weeks. */
- static DWORD last_tick;
- static uint64_t now_tick64;
- DWORD now_tick = GetTickCount();
- now_tick64 += ((DWORD)(now_tick - last_tick));
- last_tick = now_tick;
- return (double)now_tick64 * 1.0E-3;
- #else
- struct timespec now_ts;
- clock_gettime(CLOCK_MONOTONIC, &now);
- return (double)now.tv_sec + (double)now.tv_nsec * 1.0E-9;
- #endif
- }
- static int
- timer_add(struct mg_context *ctx,
- double next_time,
- double period,
- int is_relative,
- taction action,
- void *arg)
- {
- unsigned u, v;
- int error = 0;
- double now;
- if (ctx->stop_flag) {
- return 0;
- }
- now = timer_getcurrenttime();
- /* HCP24: if is_relative = 0 and next_time < now
- * action will be called so fast as possible
- * if additional period > 0
- * action will be called so fast as possible
- * n times until (next_time + (n * period)) > now
- * then the period is working
- * Solution:
- * if next_time < now then we set next_time = now.
- * The first callback will be so fast as possible (now)
- * but the next callback on period
- */
- if (is_relative) {
- next_time += now;
- }
- /* You can not set timers into the past */
- if (next_time < now) {
- next_time = now;
- }
- pthread_mutex_lock(&ctx->timers->mutex);
- if (ctx->timers->timer_count == MAX_TIMERS) {
- error = 1;
- } else {
- /* Insert new timer into a sorted list. */
- /* The linear list is still most efficient for short lists (small
- * number of timers) - if there are many timers, different
- * algorithms will work better. */
- for (u = 0; u < ctx->timers->timer_count; u++) {
- if (ctx->timers->timers[u].time > next_time) {
- /* HCP24: moving all timers > next_time */
- for (v = ctx->timers->timer_count; v > u; v--) {
- ctx->timers->timers[v] = ctx->timers->timers[v - 1];
- }
- break;
- }
- }
- ctx->timers->timers[u].time = next_time;
- ctx->timers->timers[u].period = period;
- ctx->timers->timers[u].action = action;
- ctx->timers->timers[u].arg = arg;
- ctx->timers->timer_count++;
- }
- pthread_mutex_unlock(&ctx->timers->mutex);
- return error;
- }
- static void
- timer_thread_run(void *thread_func_param)
- {
- struct mg_context *ctx = (struct mg_context *)thread_func_param;
- double d;
- unsigned u;
- int re_schedule;
- struct ttimer t;
- mg_set_thread_name("timer");
- if (ctx->callbacks.init_thread) {
- /* Timer thread */
- ctx->callbacks.init_thread(ctx, 2);
- }
- d = timer_getcurrenttime();
- while (ctx->stop_flag == 0) {
- pthread_mutex_lock(&ctx->timers->mutex);
- if ((ctx->timers->timer_count > 0)
- && (d >= ctx->timers->timers[0].time)) {
- t = ctx->timers->timers[0];
- for (u = 1; u < ctx->timers->timer_count; u++) {
- ctx->timers->timers[u - 1] = ctx->timers->timers[u];
- }
- ctx->timers->timer_count--;
- pthread_mutex_unlock(&ctx->timers->mutex);
- re_schedule = t.action(t.arg);
- if (re_schedule && (t.period > 0)) {
- timer_add(ctx, t.time + t.period, t.period, 0, t.action, t.arg);
- }
- continue;
- } else {
- pthread_mutex_unlock(&ctx->timers->mutex);
- }
- /* 10 ms seems reasonable.
- * A faster loop (smaller sleep value) increases CPU load,
- * a slower loop (higher sleep value) decreases timer accuracy.
- */
- #ifdef _WIN32
- Sleep(10);
- #else
- usleep(10000);
- #endif
- d = timer_getcurrenttime();
- }
- ctx->timers->timer_count = 0;
- }
- #ifdef _WIN32
- static unsigned __stdcall timer_thread(void *thread_func_param)
- {
- timer_thread_run(thread_func_param);
- return 0;
- }
- #else
- static void *
- timer_thread(void *thread_func_param)
- {
- timer_thread_run(thread_func_param);
- return NULL;
- }
- #endif /* _WIN32 */
- static int
- timers_init(struct mg_context *ctx)
- {
- ctx->timers = (struct ttimers *)mg_calloc(sizeof(struct ttimers), 1);
- (void)pthread_mutex_init(&ctx->timers->mutex, NULL);
- (void)timer_getcurrenttime();
- /* Start timer thread */
- mg_start_thread_with_id(timer_thread, ctx, &ctx->timers->threadid);
- return 0;
- }
- static void
- timers_exit(struct mg_context *ctx)
- {
- if (ctx->timers) {
- pthread_mutex_lock(&ctx->timers->mutex);
- ctx->timers->timer_count = 0;
- (void)pthread_mutex_destroy(&ctx->timers->mutex);
- mg_free(ctx->timers);
- }
- }
|